Modern Functional Analysis in the Theory of Sequence Spaces and Matrix Transformations
نویسنده
چکیده
Many concepts and theories in functional analysis have turned out to be powerful and widely used tools in operator theory, in particular in the theory of matrix transformations between sequences spaces in summability. We give an introduction to the basic theory of FK, BK, AK and AD spaces, the various types of dual spaces of sequence spaces, and apply the general results to the characterisations of classes of matrix operators between certain sequence spaces that arise in summability. We also study the Hausdorff measure of noncompactness and its applications to the characterisations of compact operators between sequence spaces. This is a survey paper which also includes some results of the author’s joint research with V. Rakočević and I. Djolević at the Department of Mathematics of the Faculty of Science and Mathematics at the University of Nǐs, Serbia. Although many of the results are probably known to specialists, the proofs are included for the convenience of those readers who may not be too familiar with the subject, and an appendix is added at the end containing the fundamental theorems in functional analysis in the versions they are applied.
منابع مشابه
Application of measures of noncompactness to infinite system of linear equations in sequence spaces
G. Darbo [Rend. Sem. Math. Univ. Padova, 24 (1955) 84--92] used the measure of noncompactness to investigate operators whose properties can be characterized as being intermediate between those of contraction and compact operators. In this paper, we apply the Darbo's fixed point theorem for solving infinite system of linear equations in some sequence spaces.
متن کاملAn application of Fibonacci numbers into infinite Toeplitz matrices
The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملOn the Spaces of $lambda _{r}$-almost Convergent and $lambda _{r}$-almost Bounded Sequences
The aim of the present work is to introduce the concept of $lambda _{r}$-almost convergence of sequences. We define the spaces $fleft( lambda _{r}right) $ and $f_{0}left( lambda _{r}right) $ of $ lambda _{r}$-almost convergent and $lambda _{r}$-almost null sequences. We investigate some inclusion relations concerning those spaces with examples and we determine the $beta $- and $gamma $-duals of...
متن کاملExtension of Hardy Inequality on Weighted Sequence Spaces
Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...
متن کامل